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Abstract

Providing point-to-point messaging-passing semantics
atop Put/Get hardware traditionally involves implement-
ing a protocol comprising three network latencies. In
this paper, we analyze the performance of an alternative
implementation approach—receiver-initiated message
passing—that eliminates one of the three network la-
tencies. Performance measurements taken on the Cell
Broadband Engine indicate that receiver-initiated mes-
sage passing exhibits substantially lower latency than
standard, sender-initiated message passing.

1. Introduction

Remote Direct Memory Access (RDMA)—also
known as the PUT/GET or one-sided communication
model—is a mechanism for transferring data over a net-
work to (PUT) or from (GET) an address in another
node’s memory without the explicit involvement of the
remote node’s CPU. RDMA is supported by all of the
major cluster interconnects, including InfiniBand [10],
QsNetII [1], iWARP-enabled Ethernet [9], and Myrinet
GM [18]. The advantages of RDMA are that it reduces
memory copies, decouples the CPU from data transfer,
and relaxes data-ordering constraints, all of which can
help improve raw communication performance.

Few programmers, however, write explicit
PUT/GET code. Instead, it is far more common in
the context of clusters and parallel computers to
program using the MPI [22] interface, the de facto
standard for message passing (a.k.a. the two-sided
communication model). MPI provides a rich set of
communication primitives and is portable to a wide
variety of network architectures, including those based
on RDMA communication.

This paper presents and evaluates the performance
of a mechanism for implementing MPI-style message
passing atop RDMA networks. While our approach

is applicable to RDMA networks in general—and can
easily be extended even to traditional send/receive
networks—our initial implementation targets networks
of Cell Broadband Engine (CBE or simply “Cell”) pro-
cessors [5]. A Cell contains a single 64-bit PowerPC
processor (the PPE) and eight vector processors called
synergistic processing elements (SPEs). The Cell is an in-
teresting target for a high-performance messaging layer
because of its high peak performance: 204.8 Gflop/s
(billion floating-point operations per second) in single
precision or 14.6 Gflop/s in double precision. Because
each SPE can directly access only 256 KiB1 of memory—
on-chip SRAM known as local store—a typical appli-
cation must communicate frequently to stage data held
in off-chip main memory into and out of local store and
to coordinate the SPEs. Data transfers are performed
primarily using explicit DMA operations (PUT and GET)
while coordination and synchronization can exploit a va-
riety of hardware mechanisms [13]. Because communi-
cation must be fairly fast in order to keep the vector units
busy it is worthwhile to optimize the performance of the
software communication layer. In this paper we describe
how we managed to provide send/receive performance
that rivals the lower-level PUT/GET performance and sig-
nificantly improves upon the performance of previously
published results.

The remainder of this paper is structured as fol-
lows. Section 2 presents the key concept underlying
our approach—receiver-initiated message passing—and
describes the implementation in a high-level, network-
independent manner. We then contrast our work to other
projects in Section 3. Cell-specific implementation de-
tails are provided in Section 4. In Section 5 we analyze
the performance of our messaging layer and discuss its
performance relative to the hardware performance and
relative to comparable messaging layers. Finally, we
draw some conclusions from our work in Section 6.

1This paper follows the IEC convention [23] that KB, MB, and GB
represent 103, 106, and 109 bytes while KiB, MiB, and GiB represent
210, 220, and 230 bytes.
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Figure 1: Sender- vs. receiver-initiated message passing

2. Receiver-Initiated Message Passing

Message passing over RDMA is traditionally im-
plemented using a sender-initiated protocol as shown in
Figure 1(a). First, the sender transmits a control message
to the receiver, specifying the number of bytes it intends
to transmit. Next, the receiver locates or allocates re-
sources (e.g., a buffer in which to store the message) and
transmits a control message back to the sender indicating
the address to which the data should be written. Finally,
the sender uses a PUT mechanism to transmit the data
and a completion flag to notify the receiver that the PUT
has completed. (In some implementations, the receiver
does a GET of the data followed by transmitting a control
message to indicate that the GET has completed.) Simi-
lar procedures are used for send/receive-based message
passing.

The key innovation behind our messaging layer’s

implementation is the use of receiver-initiated message
passing instead of the usual sender-initiated message
passing. Figure 1(b) illustrates this protocol. First, the
receiver allocates resources and transmits a control mes-
sage back to the sender indicating the buffer size and
the address to which the data should be written. Then,
the sender uses a PUT mechanism to transmit the data
and a completion flag to notify the receiver that the PUT
has completed. As should be evident from Figure 1,
receiver-initiated message passing pays two network la-
tencies instead of the usual three. This reduction in
network latencies is intended to produce lower-latency,
higher-bandwidth communication than is possible with
sender-initiated message passing.

The importance of receiver-initiated message pass-
ing is not so much a reduction in the total number of
messages but a reduction in the number of synchroniza-
tion points—the number of times that one process must
wait for a message from another process to traverse
the network. That is, Figure 1(b) represents receiver-
initiated message passing regardless of whether the data
and completion flag are sent with a single PUT or any
number of back-to-back PUTs. Synchronizations expose
the network latency, and receiver-initiated message pass-
ing transmits data with fewer synchronizations than are
needed by sender-initiated message passing.

So as to avoid any confusion we should state that
receiver-initiated message passing is not equivalent to
messaging based on RDMA GET. Receiver-initiated
message passing can conceivably be based on either
GET or PUT—our initial implementation (Section 4)
uses PUT—while GET-based communication can be ei-
ther sender- or receiver-initiated. As a concrete example,
consider Karamcheti and Chien’s “pull-based” messag-
ing [12], one of the earliest attempts to achieve robust,
high-performance communication on a system providing
hardware support for remote GETs and PUTs. While the
data transfer proper is in fact initiated by the receiver in
Karamcheti and Chien’s approach, the messaging pro-
tocol as a whole is initiated by the sender. (The sender
enqueues a send request on a receive-side queue; the
receiver GETs the data from the sender; then, the re-
ceiver notifies the sender that the buffer can be reused.)
Consequently, we consider pull-based messaging and its
intellectual offspring as sender-initiated message pass-
ing, not receiver-initiated message passing.

Given that receiver-initiated message passing is such
a simple modification to sender-initiated message pass-
ing, why is it not more commonly utilized? We sus-
pect that many researchers have considered receiver-
initiated message passing but rejected its use because
of one fundamental limitation: A receiver needs to
know which sender will send to it. Consequently, MPI’s



MPI_ANY_SOURCE specifier [22], a wildcard-receive
mechanism, is nontrivial to implement efficiently in the
context of receiver-initiated message passing. Our per-
spective is that (1) small-memory processors such as
the Cell SPE cannot effectively run a complete MPI
implementation to begin with; and, (2) most applica-
tions that use MPI—especially those that are likely to
be ported to networks of Cells—utilize sufficiently regu-
lar communication patterns that they do not inherently
rely upon wildcard receives. If we are correct in these
assumptions then it makes sense to sacrifice support for
MPI_ANY_SOURCE to gain improved communication
performance for the common case, in which a receiver
knows a priori which senders will give it data.

3. Related Work

Receiver-initiated communication has previously
been used in the contexts of multicast communica-
tion [24], load sharing [6], and media-access control
protocols [25]. Our work represents one of the only
implementations of receiver-initiated communication in
the context of point-to-point communication in high-
performance messaging layers for parallel applications.
The Fast Communication Interface (FCI) [3], a low-
level messaging layer designed as part of the Swiss-Tx
project, is one of the only published examples of receiver-
initiated message passing. FCI even implements wild-
card receives. However, the implementation of wildcard
receives requires that the sender acquire a global lock on
the receive request before transferring any data. While
a per-message global lock is unlikely to cause severe
performance degradation on a small cluster—the final
Swiss-T1 system contained only 64 processors [8]—it is
likely to be unusably slow on the cluster that our work
is targeting: The Roadrunner system soon to be installed
at Los Alamos National Laboratory will contain over
100,000 SPE processor cores. As we stated in Section 2,
it is likely that others have considered but dismissed the
use of receiver-initiated message passing on the grounds
that it cannot efficiently implement wildcard receives.
Our argument is that the gain in communication perfor-
mance outweighs this minor limitation.

In terms of providing an MPI [22] implementation
for the Cell SPEs, the most closely related projects to
ours are the Cell MPI implementations from Kumar, Kr-
ishna, et al. [15–17]. The key philosophical difference
between our work and theirs is that we assume that the
data buffers to be communicated reside in the SPEs’ lo-
cal stores while Kumar, Krishna, et al. assume that these
buffers reside in main memory. It is too early to tell
which assumption presents application developers with
a more convenient programming model. However, com-
munication across local stores can exploit an aggregate

communication bandwidth of 204.8 GB/s (190.7 GiB/s)
while communication between main-memory buffers re-
quires two crossings (source memory to local store and
local store to destination memory) of a shared 25.6 GB/s
(23.8 GiB/s) channel [13]. For messages that fit in the
small (256 KiB) SPE local store, our approach therefore
has the potential for an eight-fold performance improve-
ment over Kumar, Krishna, et al.’s MPI implementations
based solely on the available aggregate bandwidths. Be-
side the philosophical difference, we show in Section 5.3
that our receiver-initiated message-passing mechanism
enables our MPI implementation to provide 30.5% bet-
ter latency than Kumar, Krishna, et al.’s in an apples-to-
apples comparison.

Ohara et al. [20] have implemented an MPI-like pro-
gramming model for the Cell based on the notion of a
microtask, a unit of computation and its associated data
that fit in a SPE’s local store—essentially a virtual SPE.
A scheduler decides where and when to run each micro-
task. Although Ohara et al.’s microtask communication
is based on MPI, this model does assume finer-grained
units of work than are used by a typical MPI program.
An advantage of the microtask model relative to the tra-
ditional coarse-grained MPI model is that microtasks
can be scheduled easily and flexibly. A disadvantage is
that microtask-scheduling overhead may turn out to in-
cur a significant performance cost relative to a statically
scheduled MPI program.

High-performance messaging-layer implementa-
tions boomed in the early-to-mid 1990s with such
projects as Active Messages [27], Fast Messages [21],
U-Net [26], and VMMC [2]. With the emergence of
MPI as the dominant interface for parallel programming,
much messaging-layer research now focuses on improv-
ing communication performance in the context of MPI.
A recent example is Buntinas et al.’s Nemesis messaging
layer [4]. Like our messaging layer, Nemesis uses high-
speed but nonscalable mechanisms when communicating
within a node and lower-speed but more scalable mech-
anisms when communicating outside a node. However,
Nemesis’s high-speed mechanisms such as its “fastbox”
and shadow head pointer assume cache-coherent shared
memory while our high-speed mechanisms assume dis-
tributed memory and explicit RDMA-based data trans-
fers. Also, because Nemesis is intended to run on conven-
tional microprocessors with abundant memory it is able
to support the complete MPI specification while our mes-
saging layer provides only a subset so as to fit in the lim-
ited Cell local store. Because of these differences a per-
formance comparison between Nemesis and our messag-
ing layer is of only limited value. Nevertheless, to make
the raw performance data explicit, Nemesis observes
0.341 µs latency and 1.5 GiB/s bandwidth between the
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two cores of a dual-core 2.0 GHz Opteron socket [4]
versus our 0.272 µs latency and 22.9 GiB/s bandwidth
between two SPEs of an 8-SPE 3.2 GHz Cell socket.

4. Implementation

Our initial implementation of receiver-initiated mes-
sage passing targets clusters of Cell processors. We
rather generically call this initial implementation the
Cell Messaging Layer. The programming model under-
lying the Cell Messaging Layer is that applications run
entirely on the SPEs with one rank in the computation
per SPE. The Cell Messaging Layer treats the PPE as
an intelligent network interface card (NIC) and uses it
solely to communicate with other Cells.

The Cell Messaging Layer’s application program-
ming interface (API) provides a subset of MPI’s func-
tions and semantics [22]. Section 4.4 lists what the Cell
Messaging Layer does and does not implement. Briefly,
its limitations stem primarily from the extremely lim-
ited amount of local store available to each SPE. The
Cell Messaging Layer’s entire footprint in local store is
10,768 bytes (8,624 code + 2,144 data). This is for a
build that supports clusters of symmetric multiprocessors
(SMPs) containing up to 16 SPEs per SMP node. Each
additional SPE within a node requires approximately
64 bytes of additional local store. No additional local
store is required to communicate with a SPE in a differ-
ent node because this communication is handed off to
the PPE, which performs the internode communication
using exclusively main memory. The remainder of Sec-
tion 4 explains in detail the Cell Messaging Layer’s data
structures and communication protocols.

4.1. Cell overview and primitive performance

Figure 2 presents a high-level illustration of the Cell
processor. The important architectural characteristics
from the standpoint of a messaging-layer implemention
are the following:

• Each of the eight Synergistic Processor Elements
(SPEs) contains a 3.2 GHz, in-order Synergistic
Processor Unit (SPU) vector processor plus only
256 KiB of directly addressible high-speed memory
(local store). Communication with other SPEs and
access to main memory must be perfomed via DMA
operations.

• The PowerPC Processor Element (PPE) contains a
3.2 GHz, 64-bit, in-order PowerPC Processor Unit
(PPU). In our experience, the PPE is a fairly slow
processor—a third as fast as a 2.2 GHz Opteron or
a 1.9 GHz Power5 on a small kernel application

we benchmarked. Hence, the PPE is better utilized
as a communication processor than as a compute
processor.

• The SPEs, PPE, memory interface controller (MIC),
and broadband interface (BIF)—the connection to
other Cells within an SMP—are interconnected via
a high-speed Element Interconnect Bus (EIB). The
EIB comprises four rings—two in each direction—
and a central arbiter. In the absence of path con-
tention, each ring can perform three concurrent
data transfers. The SPEs, PPE, and MIC each
have 25.6 GB/s (23.8 GiB/s) links to and from the
EIB. The BIF bandwidth is configurable at boot
time. The combined bandwidth for the BIF and (not
shown in Figure 2) system I/O is 25.0 GB/s inbound
and 35.0 GB/s outbound. On our test platform the
BIF is configured with 20.0 GB/s (18.6 GiB/s) in-
bound and 30.0 GB/s (27.9 GiB/s) outbound, or ef-
fectively 20.0 GB/s in each direction for the two
directly connected Cells.

The Cell provides a number of synchronization
mechanisms for coordinating the PPE and the SPEs.
Mailboxes are a convenient way to transmit a small
number of 32-bit units of data. However, mailbox per-
formance is surprisingly poor: We measured a half
round-trip time (½ RTT) of 5-6 µs for mailbox com-
munication between a SPE and the PPE! The fetch-
and-add mechanism is useful for implementing wait-
free data structures—in particular, message queues.
We measured the Cell’s fetch-and-add latency (via the
SPE library’s atomic_add_return() function) as
0.134 µs. However, because fetch-and-add is an inher-
ently serial operation, its latency increases linearly with
contention. With all eight SPEs performing simulta-
neous fetch-and-add operations, one would expect to
observe up to 8× 0.134 = 1.072 µs latency, which we
consider too high for intra-socket communication.

Because of the high costs of the various synchro-
nization primitives we decided to structure the Cell Mes-
saging Layer to use exclusively DMA-based synchro-
nization (e.g., waiting for a flag to be set by a DMA
PUT). Furthermore, because all communication between
the SPEs and the PPE is serialized at the PPE we decided
to structure the Cell Messaging Layer to avoid the PPE
for all intra-Cell communication.

4.2. Point-to-point communication

Intra-Cell communication Figure 3 illustrates the
data transfers used in SPE-to-SPE communication.
SPE-to-SPE communication follows the basic receiver-
initiated message passing approach outlined in Section 2.
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In Step 1, the receiver PUTs a message descriptor into
the sender’s receive-request slot associated with the re-
ceiver’s local rank. In fact, this action comprises two
PUT operations. The first PUT transfers the address
of the application’s receive buffer, the address of the
sender’s Sender finished? flag, message length, global
ranks of the sender and receiver, and any operation-
specific data (described in Section 4.3). The second
PUT—which is “fenced” to force the first PUT to com-
plete first—specifies that the first PUT’s data is ready to
be read. (Recall from the discussion in Section 2 that the
use of multiple back-to-back PUTs does not negate the
fact that this communication protocol is an instance of
receiver-initiated message passing.) In Step 2, when the
sender observes the receive request, it PUTs data directly
from the application’s send buffer into the application’s
receive buffer on the receiver SPE followed by a fenced
PUT to the Sender finished? flag address. No explicit

copies are made of the data on either the send side or the
receive side.

Inter-Cell communication Because we are interested
in clusters of Cells, not just individual Cell processors,
we implemented a mechanism for forwarding data from
a SPE to its PPE then across a network to a remote PPE
and back down to the target SPE. The PPE needs to
be involved because a SPE cannot interact directly with
I/O-bus devices such as NICs. Rather than write a PPE-
to-PPE messaging layer from scratch we chose to rely on
an existing MPI implementation. (Any MPI that runs on
the PowerPC should run unmodified on the PPE.) Origi-
nally, we used receiver-initiated message passing for the
entire end-to-end transfer. However, doing so produced
poor performance because the receive request and the
data transfer each require an MPI message, and each
MPI message may internally require multiple network



crossings for MPI to exercise flow control on the data.
We therefore restructured the code to use sender-initiated
message passing at the PPE-to-PPE level to better exploit
the existing MPI implementation.

Our revised data path is illustrated in Figure 4. Com-
munication between the SPEs and the PPE is achieved
through a circular queue of send requests, a circular
queue of receive requests, and atomic operations on each
queue’s free-slot counter and free-slot index. A brief
summary of the protocol is as follows: The source SPE
enqueues the message data and a send request on its
PPE’s send queue while the target SPE enqueues a re-
ceive request on its PPE’s receive queue; the send-side
PPE transfers the message to the receive-side PPE using
MPI; and finally, the receive-side PPE transfers the data
to the target SPE and notifies it when the data is ready.

We now examine this protocol in more detail, re-
ferring to the numbered steps in Figure 4. In Step 1
on the send side and Step 5 on the receive side—these
steps can occur in parallel—the SPE repeatedly performs
an atomic_dec_if_positive() operation on the
free-slot counter until it receives a nonnegative number,
implying that the queue contains a free send/receive re-
quest slot. Next, in Step 2 on the send side and Step 6
on the receive side, the SPE performs an atomic incre-
ment of the free-slot index and takes the result modulo
the queue length to determine which queue slot to write
to. In Step 3, the sender PUTs the message data into
the appropriate slot in the send queue then performs a
fenced PUT to the valid? flag. Analogously, in Step 7 the
receiver PUTs the message data into the appropriate slot
in the receive queue then performs a fenced PUT to the
valid? flag. The send-side PPE invokes MPI_Isend()
to transmit the data through the network to the remote
PPE in Step 4, and the receive-side PPE invokes the cor-
responding MPI_Irecv() in Step 8. When the data
arrives at the receiver, the PPE transfers that data to the
SPE either with a simple memcpy() into the SPE’s
local store or by instructing the SPE to GET the data
from main memory and signal the PPE when the GET
completes by setting a flag in local store. We determined
empirically that the memcpy() approach is faster for
messages of length 128 bytes or less because of the low
startup overhead and that the GET approach is faster for
longer messages because of the higher memory band-
width available to DMA operations.

Inter-Cell communication, besides being practical
on its own, also demonstrates that receiver-initiated
message passing can coexist with conventional, sender-
initiated message passing. It may thereby be possible to
efficiently implement wildcard receives in an MPI im-
plementation that uses receiver-initiated message pass-
ing by falling back onto a lower-performing sender-

initiated scheme when MPI_ANY_SOURCE is needed.
Constructing such a scheme is beyond the scope of this
paper, but a nonscalable approach is discussed by Brauss
et al. [3].

As an aside, the Cell Messaging Layer additionally
uses the SPE-to-PPE and PPE-to-SPE paths to imple-
ment a remote-procedure call (RPC) mechanism that
enables a SPE to invoke functions on the PPE and re-
ceive the results. We have found this to be convenient
for enabling SPEs to dynamically allocate main memory,
for example.

4.3. Collective communication

Given point-to-point messaging passing it is straight-
forward to implement collective operations. In the Cell
Messaging Layer’s barrier implementation, each SPE
notifies its PPE that it has entered the barrier, then all
SPEs synchronize with each of their immediate neigh-
bors (within the same Cell) on a binary hypercube. Con-
currently, all of the PPEs perform an MPI_Barrier().
Finally, each PPE notifies its local SPEs that they can
exit the barrier.

Broadcasts and reductions are implemented using
binomial trees, which have long been known to be an
efficient mechanism for such operations [11]. Binomial
trees are particularly useful for clusters such as ours (Sec-
tion 5) in which each node is in fact an SMP containing
two Cells. Although the hardware supports seamless
RDMA operations between the two Cells—they can
appear as a single Cell with double the number of SPEs—
inter-Cell data transfers observe significantly less band-
width than intra-Cell data transfers (about a fifth accord-
ing to our measurements). One advantage of a binomial
tree is that only a single message traverses the slow, inter-
Cell link in the common case of local rank 0 serving as
the root of the broadcast/reduction. All other communi-
cation traverses only the fast, intra-Cell EIB links.

Broadcasts and reductions are implemented hi-
erarchically, separating local (intra-Cell) processing
from global (MPI) processing. Internally, when in-
voking point-to-point operations, the Cell Messaging
Layer’s broadcasts and reductions utilize the operation-
specific data field shown in Figures 3 and 4 to trans-
mit metadata such as the root rank, the reduction
function (e.g., MPI_SUM), and the reduction datatype
(e.g., MPI_DOUBLE).

4.4. Current limitations

The Cell Messaging Layer does not provide
a complete MPI implementation. At the time of
this writing it includes only the following functions:
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MPI_Init(), MPI_Comm_rank(), MPI_Comm_
size(), MPI_Send(), MPI_Recv(), MPI_
Barrier(), MPI_Bcast(), MPI_Reduce(),
MPI_Allreduce(), MPI_Wtime(), MPI_
Abort(), and MPI_Finalize(). The Cell Messag-
ing Layer was developed in conjunction with an effort
by Los Alamos National Laboratory’s Performance and
Architecture Lab to port the Sweep3D neutron-transport
kernel [14] to the Cell processor, and the preceding
functions are sufficient for implementing Sweep3D’s
communication routines.

In addition to the Cell Messaging Layer’s limited
function set, MPI_COMM_WORLD (the set of all SPEs)
is the only supported communicator; there are no de-
rived datatypes; message tags are currently ignored;
MPI_Send() exhibits MPI_Ssend()’s semantics of
always synchronizing the sender and the receiver; and
MPI_ANY_SOURCE is not implemented. Subcommu-
nicators, derived datatypes, message tags (including
MPI_ANY_TAG), a non-synchronizing MPI_Send(),
and many of the omitted MPI functions (e.g., nonblock-
ing point-to-point operations and additional collective
routines) should all be straightforward to implement but
can be expected to exact a slight toll in common-case per-
formance. As stated previously, MPI_ANY_SOURCE
conflicts with the notion of receiver-initiated message
passing and may be challenging to implement in an effi-
cient, scalable manner in such a setting.

More functionality will be added to the Cell Mes-
saging Layer in the future; the purpose of our initial
implementation is to demonstrate the performance of
receiver-initiated message passing and to be able to port

some simple applications to the Cell. As more applica-
tions are ported, the Cell Messaging Layer will grow
to include the functions and semantics needed by those
applications.

5. Performance Evaluation

Having argued that receiver-initiated message pass-
ing is expected to improve communication performance
and described the embodiment of receiver-initiated mes-
sage passing in the Cell Messaging Layer, we now ex-
amine how well the Cell Messaging Layer performs on
actual hardware. For completeness we also include per-
formance measurements for inter-Cell communication
even though, as Section 4.2 explained, that code path
uses traditional, sender-initiated message passing.

The platform on which we perform all of our ex-
periments is a small cluster of Cells. Each node in the
cluster contains a QS21 [19] blade. The QS21 organizes
two 3.2 GHz CBEs into an SMP configuration. The clus-
ter is interconnected with an InfiniBand [10] network.
Each node contains a single InfiniBand 4X SDR NIC.
For inter-Cell communication we run the Open MPI [7]
implementation of MPI on the PPEs.

5.1. Cell primitive performance

To help relate the Cell Messaging Layer’s perfor-
mance to the performance of the underlying communi-
cation primitives, Table 1 presents the results of a set of
measurements of various Cell data-transfer primitives.
All transfers were performed within a single Cell. All
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Initiator Source Target Operation
Throughput

(MiB/s)

SPE Local store Local store PUT 24,413
SPE Local store Local store GET 24,413

SPE Local store Main memory PUT 11,321
SPE Main memory Local store GET 6,691

PPE Main memory Local store memcpy() 1,213
PPE Local store Main memory memcpy() 199

Table 1: Performance of CBE communication primitives

measurements represent the time for 1,000,000 back-
to-back operations on units of 16 KiB of data. The
memcpy() from main memory to local store includes
flushing the data from cache. The memcpy() from lo-
cal store to main memory is optimized to copy 16 bytes
at a time instead of 8.

Some points to note from the data in Table 1 are
that PUT and GET have equal performance—right at the
theoretical maximum—when transferring between local
stores, but PUTs are significantly faster than GETs when
main memory is involved. The Cell Messaging Layer
therefore uses exclusively PUTs except when the PPE
needs to transfer data to a SPE (Section 4.2). PPE-based
memcpy() does not exploit the Cell’s DMA hardware
and therefore observes extremely poor throughput.

5.2. Cell Messaging Layer point-to-point per-
formance

We measure point-to-point communication latency
by having one SPE execute MPI_Send() followed by
MPI_Recv() while a second SPE executes the match-
ing MPI_Recv() and MPI_Send(). This pattern is
repeated 10,000 times (with 10 warmup repetitions) and
the one-way latency is reported as the total time divided
by 20,000—half the average round-trip time (½ RTT).
We report bandwidth as the byte count divided by the
latency then scaled to units of MiB/s. Figure 5 presents
the performance results for three sets of SPEs: “Same
Cell”, in which the two SPEs communicate directly over
the EIB; “Same SMP”, in which the two SPEs are on
different Cell sockets on the same QS21 node, there-
fore requiring crossings of both the EIB and BIF; and,
“Different SMPs”, in which the two SPEs are on differ-
ent nodes, therefore requiring additional communication
through the I/O subsystem and across the InfiniBand
network. The graphs in Figure 5 include both measured
data (points) and the results of linear regressions on that
data (lines). The intra-Cell and intra-SMP curves are
quite smooth and are matched well by the regressions.
This is to be expected given that the Cell Messaging

Layer essentially just sets up a data transfer and lets the
Cell’s DMA hardware perform it.

The table in Figure 5(c) states each 0 B latency
from Figure 5(a) and each 128 KiB bandwidth from Fig-
ure 5(b). To put these numbers in perspective, the table
further shows each latency figure in terms of equiva-
lent SPE clocks (at 3.2 GHz) and each bandwidth figure
in terms of the equivalent single- and double-precision
floating-point operation rate. The significance of these
values is that they quantify the minimum amount of com-
putation that needs to be performed per floating-point
operation to shift the performance bottleneck from com-
munication to computation. For example, a piece of code
that is run entirely within a single Cell should perform
three double-precision floating-point operations for ev-
ery five double-precision numbers sent or received via
the Cell Messaging Layer (a ratio of 1:0.6).

The not-yet-released eDP (enhanced double pre-
cision) version of the Cell increases the peak 8-SPE
double-precision performance from 14.6 Gflop/s to
102.4 Gflop/s with single-precision performance remain-
ing at 204.8 Gflop/s. We measured the Cell Messaging
Layer on a prototype eDP board at IBM and found simi-
lar performance to that presented in this paper. (This is
to be expected; only the floating-point pipeline, not the
integer pipeline, has so substantially improved.) Conse-
quently, on the eDP the values in the double-precision
column of Figure 5(c) are almost exactly half of the val-
ues in the single-precision column, which themselves
remain unchanged.

According to Figure 5, the Cell Messaging Layer
observes a small minimum latency (0.272 µs—a cost
equivalent to 870 SPE clock cycles) and a large maxi-
mum bandwidth (22,944 MiB/s) in the intra-Cell case.

While intra-SMP latency (0.825 µs) is reasonable,
intra-SMP bandwidth is poorer than expected: only
4,281 MiB/s out of an I/O channel bandwidth of 20 GB/s
(19,072 MiB/s) [5]. Intra-SMP communication follows
the same code path as intra-Cell communication (de-
scribed in Section 4.2), which implies that the prob-
lem is with the Cell or QS21 hardware, not with the
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Configuration
Latency SPE Bandwidth SP flop/s per DP flop/s per

(µs) clocks (MiB/s) 4B word/s 8B word/s

Same Cell 0.272 870 22,944.2 4.3 0.6
Same SMP 0.825 2,640 4,281.3 22.8 3.3
Different SMPs 11.771 37,667 161.2 605.9 86.6

(c) Summary of point-to-point performance

Figure 5: Cell Messaging Layer point-to-point communication performance

Cell Messaging Layer itself. To verify this hypothesis
we performed two additional measurements, the results
of which are shown in Figure 6. First, we analyzed
the ½ RTT of a 128 KiB message between each of SPE
ranks 0–7 (on the first Cell socket) and SPE rank 8 (on
the second socket). As Figure 6(a) indicates, different
SPEs observe different latencies to the BIF although
there is no architecturally obvious explanation of the
pattern. However, the difference from the best to worst
performer is only 0.242 µs—not enough to explain the
Cell Messaging Layer’s low intra-SMP bandwidth.

Figure 6(b) varies the number of simultaneous
128 KiB ping-pongs between the two Cells (with rank P
exchanging messages with rank P +8) and reports the
aggregate bandwidth observed. The data show that
an increase in simultaneous transfers implies an in-
crease in aggregate bandwidth up to the asymptote at
20 GB/s. The conclusion is that the BIF multiplexes its
offered bandwidth, possibly over the four rings of the
EIB, implying that the Cell Messaging Layer’s intra-
SMP bandwidth of 4,281 MiB/s should be compared to
4,768 MiB/s (20 GB/s ÷ 4). That is, the Cell Messaging
Layer’s intra-SMP bandwidth is 90% of the channel’s
theoretical peak.

Node-to-node communication (11.7 µs latency and
161.2 MiB/s bandwidth) is slow—InfiniBand 4X’s the-
oretical peak bandwidth is 953.7 MiB/s—but not repre-
sentative. The QS21 boards on which we performed our
experiments contain a hardware bug on the bridge to the
PCIe I/O bus that affects correctness. The workaround
put in place involves reducing the bridge’s bandwidth to
a quarter of its nominal value. Also, the 11.7 µs latency
is only 2.9 µs higher than the PPE-to-PPE latency mea-
sured with an MPI latency benchmark. The conclusion is
that the Cell Messaging Layer’s SPE-PPE and PPE-SPE
synchronization (Section 4.2) adds only 2.9 µs of latency
to that of the underlying MPI implementation.

5.3. Comparative performance

To test our claim that receiver-initiated message
passing offers an improvement in latency over sender-
initiated message passing we compare the Cell Messag-
ing Layer, which uses receiver-initiated message passing,
to Kumar et al.’s Cell MPI implementation [17], which
uses sender-initiated message passing. One challenge
with such a comparison is that Kumar et al.’s MPI—
henceforth to be called “buffered-mode MPI”, after the
title of their paper (although they in fact use synchronous-
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Figure 6: Diagnosis of low intra-SMP bandwidth

mode communication for messages larger than 2 KiB)—
transfers data between buffers in main memory while
the Cell Messaging Layer transfers data between buffers
in local store. To account for this different in approach,
we wrote a few functions on top of the Cell Messaging
Layer to transfer data between main-memory buffers.
The sender repeatedly GETs 16 KiB blocks of data from
main memory and MPI_Send()s them to the receiver,
who MPI_Receive()s each block and PUTs it to main
memory.

Figure 7 graphs the results of this now fair com-
parison. The “CML (LS–LS)” curves are the data from
Figure 5 and are included for contrast. The “CML (MM–
MM)” curves represent the performance of the main
memory-to-main memory transfer. The “BMM (MM–
MM)” curve is the buffered-mode MPI performance.
Because the buffered-mode MPI implementation is not
publicly available we extracted the performance data
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Figure 7: Cell Messaging Layer vs. buffered-mode MPI

for the “BMM (MM–MM)” curve from Kumar et al.’s
paper using the Engauge Digitizer.2 Even with the extra
control overhead layered above it, the Cell Messaging
Layer observes a latency of 0.285 µs versus 0.41 µs for
buffered-mode MPI—an improvement of 30.5%. While
this represents an impressive speedup it is largely to be
expected: receiver-initiated message passing requires
only two network latencies versus sender-initiated mes-
sage passing’s three.

5.4. Collective-communication performance

We now briefly examine the performance of
some of the Cell Messaging Layer’s collective-
communication operations. Figure 8 presents the la-
tency of the Cell Messaging Layer’s MPI_Barrier()
and MPI_Allreduce() functions up to 64 SPEs
(4 dual-Cell QS21 boards). As that figure shows,

2http://digitizer.sourceforge.net/

http://digitizer.sourceforge.net/
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the 8 SPEs within a Cell can be synchronized in
0.354 µs, just slightly more than a point-to-point la-
tency. (Note that the Cell Messaging Layer uses a
simpler protocol for barriers than for point-to-point op-
erations.) MPI_Allreduce(), which is built atop
MPI_Send() and MPI_Recv(), takes only 3.125 µs
to sum one 32-bit integer per SPE and broadcast the
result to all of the SPEs in a Cell. Performance is smooth
across the SMP because the Cell Messaging Layer uses
a binomial tree for the all-reduce, so a minimal number
of messages crosses the slow inter-Cell link.

6. Conclusions

In this paper we argued for the use of receiver-
initiated message passing, a rarely used technique for
improving the latency of MPI-style communication atop
RDMA networks. While the traditional implementation
approach, sender-initiated message passing, has the ben-
efit of being able to efficiently support wildcard receives
(MPI_ANY_SOURCE), our argument is that on proces-
sors with high compute rates but small local memory
capacity, such as the Cell Broadband Engine, it is more
important to reduce communication latency than to pro-
vide the complete set of MPI communication semantics.

We implemented receiver-initiated message pass-
ing on the Cell and presented a set of performance
measurements. Our data show a 30.5% improvement
over the best reported latency for a Cell-based mes-
saging layer discussed in the literature, one that uses
sender-initiated message passing. We can therefore con-
clude that receiver-initiated message passing does offer
a substantial performance benefit over sender-initiated
message passing and is an implementation approach
that should be given serious consideration for future

messaging-layer implementations.
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